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Cardinal Series Interpolation to Nonuniform Grids
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We consider Whittaker’s cardinal series interpolation from a uniform grid to a
nonuniform grid. It is shown that the interpolation is a bounded linear map if and
only if a constraint on the clustering of the nonuniform grid is satisfied. An error
estimate showing the spectral accuracy of the cardinal series interpolation is also
presented. i 1994 Academic Press, Inc.

1. INTRODUCTION

In this article we consider Whittakers’s cardinal series interpolation
between a uniform grid and a nonuniform grid. Cardinal series interpola-
tion is a limiting case of cardinal spline interpolation [5] and is also a limit
for interpolation by finite Fourier series as the extent of the grid increases.
Because of this, cardinal series interpolation is important in the theory
both for interpolation using Fourier methods and as a limiting case for
more conventional local interpolation between finite difference or finite
element grids. We are currently developing a more general theory of
interpolation between grids in which the results proved here play a essen-
tial role.

Interpolation between grids is an important part of many computational
procedures. Perhaps the most important current application arises in
domain decomposition methods. Domain decomposition is used as a
means to decompose large problems into smaller subproblems that can be
solved in parallel; see the collections of papers [2, 1] for examples of the
use of domain decomposition.

The primary result of this article is the determination of the necessary
and sufficient condition for the cardinal series interpolation to be a
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bounded linear operator between the space of square summable sequences
on the first grid and a weighted norm on the second grid. The principle
technique used in the proofs is borrowed from the work of Paley and
Wiener on almost periodic functions [4, p. 108].

In Section2 we give the basic definitions, define the interpolation
operator, and give the clustering constraint to be satisfied by the grid map-
ping to give a bounded operation. In Section 3 we show that the clustering
constraint is necessary and sufficient for the one-dimensional cardinal series
interpolation to be a bounded linear operator. In Section 4 we show the
one-dimensional result can be extended to prove the result in higher dimen-
sional space. Finally, error estimates for cardinal series interpolation are
presented in Section 5.

2. FiNITE DIFFERENCE GRIDS AND CARDINAL SERIES INTERPOLATION

The usual orthogonal grid in R? with grid spacing 4, which we refer to
as G, is

(hZ)'= {mh:me Z},

where Z is the set of integers. We consider cardinal series interpolation
from G to a second grid G defined as the image of (hZ)“ under a mapping
¢ from R* to R% Usually we assume that the mapping is independent of
the grid spacing, although this requirement can be relaxed.

We take the same grid spacing 4 on both grids G and G. Our treatment
easily extends to using two different grid spacings 4 and #, for G and G,
respectively, as long as the grid ratio #/h remains bounded above and
bounded away from zero. For simplicity of exposition we use only the one
parameter A.

The space of grid functions on G is the set of square summable sequen-
ces. That is, we consider sequences {u,,} from me Z¢ and use the norm

= (w 5 lun,ﬁ).

me Z4

The Fourier transform is defined on this space by

h o\ )

ﬁ(é)=( ) Y e ™y, (2.1)
A/ 27[ meZ*

where ¢ is restricted to the domain BY= [ —nh ' nh~']% The inversion

formula is

d
um=<——1—) [ emmeaceya, (2.2)
B

N
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and Parseval’s relation relating the grid function and transform is

WS lunl?=] a1 e

me Z4

We define the norm of i as

= (] wend)

For the grid G we consider a weighted L? pseudo-norm given by

12
nvn,g=(hd 5 ﬁmlum)z) ,

me 74

where the weights f,, are nonnegative real numbers. We denote the space
of sequences for which |- 4 is finite by #° Note that ||-||, is a norm only
if all the weights are positive, and this norm is equivalent to the L? norm
in G only if the weights are bounded and bounded away from zero. Typi-
cally the weights f8,, would be some approximation to the Jacobian of ¢ at
the grid point mh.

The cardinal series interpolation of a function u defined on the grid G,
which is #Z7, is the function du on G, given by

|

((pu)m:(\/z—;

The discrete function @u is not in #“ unless some conditions are
imposed on ¢. The necessary and sufficient condition is the clustering
constraint.

) [ eomm-sq(y gz, (23)
B!

The Clustering Constraint. The measurable function ¢ from R to R
satisfies the clustering constraint on the grid G with weights g, if there is
a constant B and a positive number A, such that for 0 <h<h, and any
ve Z9 the relation

Y. Bu<B
me S,
holds, where S, is the set
{m: |k~ 'o(mh)— v, <3} (2.4)

The set S, is the set of indices of points in G that are closest to vh. There
are several important cases in which the clustering constraint is easily
verified. In one dimension, if ¢ is a differentiable function and there are
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constants b and b, such that 0 <b < f,, <b, then the clustering constraint
1s satisfied if the derivative of ¢ is bounded away from zero. As a conse-
quence, ¢ must be a monotone function. Another case is with ¢ being a
piecewise linear function, not even necessarily continuous, where the slopes
of the linear segments are bounded away from zero.

3. CARDINAL SERIES INTERPOLATION IN ONE DIMENSION

In this section we consider the special case of cardinal series interpola-
tion in one dimension. The analysis of cardinal series interpolation in
higher dimensions utilizes the result for one dimension.

In one dimension, the Fourier transform given by (2.1) can be written

h - .

Ly ey (3.1)
\/27'( ve
where u, denotes u(vh) and ¢ is restricted to the interval [ —nh~' nh™'].
The inversion formula (2.2) is

#é)=

nih
"y =— f eMHER(E) dE.

\/2—7[ nih

The cardinal series interpolation operator (2.3) is

1 nih . N
(Buy,=—= [ (g de. (32)

/27{ —n'h
By using the series (3.1) this can be expressed as a series,

o

(Pu)= 3.

v= -«

sin(h ™ 'p(mh) —v)n
1., s
l‘ (h'o(mh)—v)n

which is the classical representation of the cardinal series interpolation.

The classical cardinal series is an interpolant of a sequence of data {u,)
in /7 to a continuous function f(x), such that f{v)=u, for all v, and is
defined by

B

flxy="Y u,

Vo= gs

sin(x —v)m_
(x—v)m

see the preface to {5]. Here we make the slight modification to consider the
interpolant such that f(hv)=u,; that is, we introduce the grid scaling and,
rather than consider the continuous function, we are concerned with the
sequence obtained by the evaluation of the cardinal series at the discrete set
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of points on the other grid. The cardinal series is the limit of piecewise
polynomial spline interpolation (see lecture 9 of [5]) and is also connected
to theory of discrete entire functions (see [3]).

THEOREM 3.1. The cardinal series interpolation operator @, given by
(3.2), is a bounded operator from LY(hZ) to # if and only if the function ¢
satisfies the clustering constraint.

The operator @ is a bounded operator only if there is a constant C,
independent of & for 0 <h < hy, such that

Pull < Cllull, (3.3)
for all win L*(hZ).

Proof. We first show that the clustering constraint is a necessary condi-
tion for @ to be a bounded operator. Consider the discrete functions #**
defined by

(2) _
v

h='2 if v=ua
0 otherwise.

Note that |u™] is 1 for each a. The Fourier transform of u'* is

12

J2n

— ixhé

iE) ==

and therefore

T sin(h™ 'o(mh) ~a)n
N (h‘o(mh)—a)n

=h" " sinc(h 'o(mh)—a)m,

(Pu'),,

where sinc(y) is defined as sin())/y. The norm of @«'*' in # is
Z B, Isinc(h ~'@(mh) — )|, (3.4)
The series (3.4) is greater than the sum over the terms with me §,, ie.,

i B, Isinc(h 'o(mh) —2)n|?

m= - s

> ) ﬁ,,,IsinC(h'w(mh)—oc)nl@(%)h Y B

meS, ne Sy
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If @ is a bounded operator, then the series (3.4) is bounded independently
of a; hence the sums 3, . ¢ f,, are bounded. This is precisely the clustering
constraint.

We next show that the clustering constraint is sufficient for @ to be a
bounded operator from L2(AZ) to #. Let v denote ®u. By multiplying each
side of Eq. (3.2) by 8,,0,, and summing over all m, we have

o n'h
By Bale, = W) de. (3.5)
where
WA= 3 Futne (36)
MTm= -

We then obtain from (3.5)
ol < Iwll s,
where the norm of w is that of L*([ —nh !, nh~']). We next show that
fwl < C o)y (3.7)
for some constant C independent of v, from which we obtain
ol g < C {lulls

which is (3.3) and shows that v is in #

We now prove (3.7). The essential ideas of this proof are due to Paley
and Wiener [4] and used by them in their study of almost periodic
functions.

For each integer m, define the integer v,, by v,,—s<h 'o(mh)<v,, +3;
then for each integer v, S, is the set {m: v, = v}, which is the same as (2.4).
Given a function v in # we have the function w(¢) by (3.6) and define z(¢)
by

Wz e
z(¢) = o Y Bav,e
h = .
z\/ﬂ *z; ( ZS ﬂmum)e”"h‘:. (3.8)

We show that w and z are weli-defined functions in L*(—nh =, nh ) if ¢
satisfies the clustering constraint.
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By Parseval’s relation and the clustering constraint we have

nth 2
|, erse=h ) L Bt
sh Z Z ﬂm]vmlz Z ﬁm Bh z )Bmlvmll'
= — o MES, meS, m= - x
Thus
Izl < B vl (3.9)

and zisin L3(—=h~ '\, nh~").
We now consider the difference between w(&) and z(¢&), where we now let
¢ range throughout R. We have

Tm=—w

h F
w(E)—2(8) = \/2— S Bavale o)

_—.\/__uf Z By mjvmk e~ " dr

e o @(mh)
i}ﬂj e V(1) d (3.10)
where
Vi=h Y e0) o,
and

[ if emh)<r<v,h
e ty=4 —1 if v, h<t<o(mh)
0 otherwise.
By the clustering constraint, the sum defining V(¢) is absolutely convergent
for each value of ¢. By considering v such that 1 — $h<vh <1+ Lh, we have

2

Vil =1h 3 enlt) Butn

meS,
<h Y Bulen(DI? 3 Builvn)?
me S, meS,
<SHB Y Bolvnlt (3.11)

e S,
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Formula (3.10) shows that the function (i)' (w(&)—z(&)) is the
Fourier transform on R of the function V(¢). By Parseval’s relation on R
we have

r [w(&)—=(&)]*
e 1¢)?

From the left-hand side of (3.12) we have

dé = j o (3.12)

2 . 2
ﬁ3 lu(C)-"(é)l dc<f —é—)y——(é-ldg“. (3.13)
LA 45

To estimate the right-hand side of (3.12) we use the estimate (3.11) for
V(1) and obtain

v+ 1,2)h

f’“ VP de= Z [ V(1)) di
- o Vv L2)A
<hiB Z, ﬂm m
=h*B |lvl|}. (3.14)

Combining the two estimates (3.13) and (3.14) for (3.12) we obtain

n'h
o=zl =] 1w(&) - 2(E)> dz <728 ul3.

Together with (3.9) this implies
Iwll < BY2(1 + n) |ioll,

which is essentially (3.7) and thus (3.3) holds. This proves Theorem 3.1.

4. CARDINAL SERIES INTERPOLATION IN HIGHER IDIMENSIONS
We now prove the extension of Theorem 3.1 to higher dimensions.

THEOREM 4.1, The cardinal series interpolation operator is ¢ bounded
operator from LY hZY to B if and only if the function ¢ satisfies the
clustering constraint,
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As with the one-dimensional interpolation, it is easy to show that the
clustering constraint is necessary for @ to be a bounded linear functional.
The proof that the clustering constraint is sufficient depends on proving
that the function

b\ . )
)1’(5) = ( ) ﬁm Dme*lq’lmh)-5
\/5; mszzd

is bounded by the norm of v. This proof is made easier by employing a
convenient notation to keep track of the many functions used in the proof.
In place of the two functions z and &'V used in the one-dimensional case
we employ 2! — 2 additional functions. We designate these as w,, where
o is an element of {0, 1}* for some k, 0 <k < d. We let w correspond to the
null-sequence with k equal to 0. The proof proceeds by taking one dimen-
sion at a time and decomposing each of the functions w, into two functions
as was done in the proof of Theorem 3.1
We define the functions py(m, 4, n) and p,(m, j, n)} as

. vt
Polm, j, m)=e™"mt

and
1 il @/(mh)y<n<vi(mh
pim, jyny=< -1 if vi(mh<n<e’/(mh)
0 otherwise,
where v/(m) is defined by
viim)y—5S<h'o/(mh)y<vi(m)+ 5.
The point v(m)h is a point in (hZ)“ that is nearest to @(mh).
The function w,, for a k-tuple ¢ in {0, 1}, is defined by

“‘n(nl ey 'h», ék+]a vy &:d)
e

74
=h" Y Bov, [ po,(m jon;)exp (i Y cp"(mh)g',). 4.1
me 74 j=1 j=k+ 1

If 0, is 0, then the range of n, is [ —nh "', mh '] and if g, is 1, then the
range is R. The range of &, is [ —nh ™', nh™ '].

We let g, 0 refer to the (k + 1)-tuple formed by adding a 0 to the k-tuple
¢ and similarly for ¢, 1. Similar to the one-dimensional case we have the
relation

“‘rx(nl’ ey rlks ék+ 195 = éd)_ “‘0,0(’1[7 haad) nks E_k 4+ 1 e éd)

t * o,
/—2’—[ e ”“.]E“Iwn.l('?lv-"» His1s ‘;k«rlﬂ"-’ gd)d’ik+l
FATC Y L

vV

=10k 4
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and the resulting inequalities
well < lwaoll + Iwe —wo ol (4.2)
and
We—wooll <C llwg (. (4.3)

The relations (4.1) and (4.2) are established as was done in the proof of
Theorem 3.1.
As a consequence of repeated application of (4.2) and (4.3) we obtain

uwn<c< ¥ uwau). (4.4)

se{o, 1}4

The proof that cardinal series interpolation is a bounded interpolation
operator depends on showing that each term on the right-hand side of (4.4)
1s bounded by fjvli,;.

We now consider a representative ||w, || from (4.4), where, without loss
of generality, we may consider ¢, to be 0 for 1 <j</and ¢, to be 1 for
larger than /. We have

HW,, Hz =J j‘ lwa(éh ey éla t1+19 ASht] !d)lz dt dé
el nh-l,ah 1) Yie R

&

and

27]: me 24 F=1+1

3 : o\ e T .
W,,(él, ey Cls ’l+l’ bt ’d) = (f) Z ﬁmvmenm-Sh n pl(ma s tj)
h

/ d
:(—\/:_—> z eiv-ih 2 ﬁmvm n pl(m’j’ tf)’

2n/ ez me Sy un) J=1+1
(4.5)

where u(r) is the (d—1)-tuple given by t,— sh<uh<t+ihand S, ., is
the set of grid indices m such that v/ =v/ for j=1, .., and v/ =p’ for
j=1+1,..d

By Parseval’s relation in the first / arguments of w, we have

d 2
z /fmvm H p](m’]’ tj) dr.

me Su uin j=1i+1

IwoP=h' %

vezZl T1E Ré—H
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For each value of 1 in R~ ' and v in Z', we have

2

a
Z ﬁmvm 1_[ pl(m’js tj)

meSy J=Il+1

< Y Balvad® Y B

me Sy ) me S, uyin

d 2
I—[ pl(”’)j’ [j) '

j=t+1

Since

d
H pl(mv js tj)

j=i+1

is bounded by 1 for each value of re R“~' and ve Z’ we have, by the
clustering constraint,

~<B Yo Balvalt

ne Sy wn

2 ﬂmvm n pl(majs [/)

me Sy st J=1+1

Thus

Iw, i< Br Y | S B lvnl?

d -1 -
vezl “I1eR me Sy i)

-y ¥ ]

vez! pezd-! re B(u)

1) Y, Bulvnl?

me Sy

where B(u) is the region given by
(p,—h<4; <y + 3)h

Since the volume of B(u) is A7/, we have

Iwo I2<Br? Y., % Y Bulva*=Bh" Y B lv.l* =Bl

veZ! uEZd" meS, me Z4

This proves Theorem 4.1.

5. ERROR ESTIMATES

In this section we present estimates for the error incurred by cardinal
series interpolation. We give proofs of the error estimates in the one-dimen-
sional case; the proof for higher dimensions are sketched. We begin with a
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function u defined on R and consider the grid function Tu in L*(hZ)¥
defined by

LN e
n%=(35§~hf () d,

where B is as defined in (2.1). Note that the discrete transform of 7u is #
restricted to B%. We also consider the discrete function Eu,, obtained by
gvaluating u on the grid, ie., Eu,, = u(mh).

We consider the difference between the cardinal series interpolation of
Tu, ie., @Tu, and u evaluated on the grid ¢(hZ), which we denote by E v,
ie.,

1 el ) i
E,u, = (____) f eI S E) dE,
R

N

The interpolant of Tu is given by

d
) J’ leirp(711/1i<§l‘l‘(é) dé’
B

1
®Tu,, =
(7

and thus the error is given by

1 \? . .
E u,—®Tu, = (————) e SR &) dé.
¢ V/Q_& J/r Sl 2m

The expression |&| . refers to the supremum norm on RY ie.,

,éll = lmax léz'

<i<d

The error, the difference between the function evaluated at the grid points
and the interpolant from the evenly spaced points, is estimated using the
next theorem.

THEOREM 5.1.  If ¢ satisfies the clustering constraint and r = d, then there
is a constant C, such that for ue H'(R)

\E,u— ®Tul ;< C I’ (j

hlezn

(a”a@n%ﬁ)f

If we interpolate the function u evaluated at the grid points rather than Tu
we obtain similar estimates.
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COROLLARY 5.2. If @ satisfies the clustering constraint and r = d, then
there is a constant C, such that for ue H'(RY)

iEgu- ok, <Ca([ e )

&l.zn

As a further consequence we have that if the grid function v is a good
approximation to the smooth function « on the evenly spaced grid, then &v
is a good approximation to u on the unevenly spaced grid.

COROLLARY 5.3. If ¢ satisfies the clustering constraint, r>=d and
ue H'(RY), and v is a grid function with |v— Eul{, <e&, then there is a
constant C, such that

B tulg<C (s ([ i) )

15 2m

Proof of Theorem 5.1. We first give the proof for the one-dimesional
case; then we sketch the proof for higher dimensions. Let v, = E u,,
— &@Tu,,; then

S Palvalh=| W) de

hillzn
<([,, @ mora)
Aiglzn
12
<[ o) 51)
hjglzn

where w(&) is defined as in (3.6).
As in Section 3, define z(¢) as in (3.8). We then have, by the triangle
inequality,

12 172
(5 awora) <(] more)
hiE zn ALl za

(2
+(j} Ll iw(e:)—:(é»Pdé) - (52)
The first integral on the right-hand side of (5.2) is evaluated using the
periodicity of z(£),

x

[ naeera=[" 120r Y e+ kel
higlznrm — ik ”

n=
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where the prime on the summation denotes the omission of the term for
n=0. Now, since |¢| <nmh '

x 2 x h2
Y E+2nh nrl<2—2 Z —=7

= — o

So
[ amera<S " e <t s ;
e < [ P a < B

by (3.9).
The second integral on the right-hand side of (5.2) is estimated using the
relations (3.10), (3.12), and the estimate (3.11). We obtain

~ * —_ 2 *
J;u M‘:—)l—flf_@'—dégj» [V(0)]* dt <h*B (o] }. (5.3)

Therefore,
172
(jm Iq“l’zlvv(é)lzdé) < Ch ol
and so from (5.1)

1/2
IIE¢ll—¢Tu|7p<Ch(J |¢)21a(é)12dé) : (54)

higlzn

It easily follows from (5.4) that
h r 1/2
gpu-ota<cn() ([ e a)
n h1El=xl

for any r= 1.

We now sketch the proof for higher dimensions. As in Section 4, we
employ k-tuples ¢ to index the auxiliary functions. In place of Eq. (5.1) we
have

S Balealhi=]  WB )

me 74 hiliezn

<(f )
hidlwzm

([ wwora)
h|lle zm

1/2
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We define the function ¥Y(¢, o) for a k-tuple ¢ by
P(¢&, 6) = max (% {1&1:(i<k and o,:O)ori>k}).

The functions w, are defined as in (4.1), except here the range of £ is R,
and we include an extra factor of #'” in w, as defined by (4.5).
The first decomposition is

([, e
Al 2zn
WO =W\
<Uka PE PTG 12"5)
wo(E)12 )
" (Lr:n L WE o

wi(ty, Eay s ENIP 32
SC(L(’ 7’(5,(1))2‘4—11 di,dé:-ud&_})

wo(E)]2 )
* (L aen PE R

Proceeding with a similar decomposition on the second dimension in both
of the last integrals, we obtain at the kth step a sum of terms of the form

i (O )"
w W(E Q)X )

After all decompositions are performed, we have a sum of 27 functions
w,. As in Section 4, we consider the case where 0,=0 for 1 <i</ and
o,=1 for [<i<d We have, by the (2n/h)-periodicity of w, in the first /
dimensions,

=] [ et il g

Ml <n

J’ P I“Z’(él» R é/’ t/+)’ s t(l)lz
te -

1
x 2 VT anih a7 %

nez!

< ChY » jqu;n’(,(g,,...,5,,:,+,,...,td);Zdzdg. (5.5)

640/76/2-3
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We next use Parseval’s relation on the first / dimensions, and proceeding
in a way similar to the proof of Theorem 4.1, we have that the last integral
in (5.5) is equal to

d 2

' Y [ Y o T e de
vez “ter!! me Sy u1) Jj=1+1
<BCRSC Y [T Balvaldi

d— 4
vezl TteR me S )

—BCH¥+'Y Y (Lwldr) Y B lowl?

ve Zl ueZ’/ l meSv.[,

=BCh3d Z Z .Bm |vm|2=C2h2d anfzi

ve z4 mesS,
From this the theorem follows easily.

Proof of Corollary 5.2. We have, for one dimension,

Bty == [ ™a(e) de = u(mh)
J2me-w
and
1 b
Eu,,— Tu= J (&) dE.
J2m A

It is then easily shown that

|Eu,, — Tull, < Ch (J |€,2 lﬁ(é)'z df)l‘z

N
similar to (5.4). We then have
|Eyu— PEully < | E,u— ®Tull 4+ | D(Tu~ Eu)l 5
S||E u— @Tulj+ C || Tu— Eul,
by Theorem 3.1. The proof for more dimensions is similar.
Proof of Corollary 5.3. We have, for one dimension,
E,u—®v| ;< |E,u—~PEul;+ ||PEu— Do,
S| E, u— @Eu;+ C || Eu—vl,.

The result then follows from Corollary 5.2.
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6. CONCLUSIONS AND OBSERVATIONS

The error estimates given here display the “infinite” order of accuracy of
the cardinal series interpolation, that is, the order of accuracy depends only
on the differentiability of the function being interpolated. Notice that there
are no smoothness requirements on the grid mapping ¢. A careful
examination of the proofs shows that no use is made of the order of the
points in the grid G, and thus any rearrangement of how the points of G
are mapped to the points in G is an equivalent mapping. In particular, the
properties of the interpolation depend essentially on the location of the
points in G and less on the mapping ¢.
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